Même si les OGM ont probablement un potentiel pour la tolérance à la sécheresse, ceci n’a pas encore été pleinement démontré et n’est pas pour l’instant accepté par la société.
La stratégie fondée sur l’exploration des ressources génétiques naturelles est tout aussi prometteuse. Elle requiert de nouvelles technologies en génomique, en analyse du comportement et en modélisation des plantes. Elle est donc une stratégie à haute valeur ajoutée en termes de connaissances et de technologie. On peut parier que le progrès génétique obtenu en conditions sèches entre 1950 et 2010 pourra continuer au prix de changement de méthodes, impliquant l’analyse des génomes, l’analyse automatisée du comportement des plantes et la modélisation numérique de plantes virtuelles.
Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Bussière F (2003) An overview of the crop model STICS. European Journal of agronomy, 18(3), 309-332.
Brisson N, Gate P, Gouache D, Charmet G, Oury FX, Huart F (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France Field Crop Research, 119, 201-12.
Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F (2016) High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytologist:n/a-n/a. DOI: 10.1111/nph.14027
Campos H, Cooper M, Edmeades GO, Löffler C, Schussler JR, Ibañez Campos M (2006) Changes in drought tolerance in maize associated with fifty years of breeding for yield in the U.S. corn belt. Maydica, 51, 369-381.
Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a “gene-to-phenotype” modeling approach. Genetics, 183(4), 1507-1523.
Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C (2009) Modeling QTL for complex traits: detection and context for plant breeding. Current opinion in plant biology, 12(2), 231-240.
Field CB, Barros VR, Mastrandrea MD, Mach KJ, Abdrabo MAK, Adger WN, Anokhin Y, Anisimov OA, Arent DJ, Barnett J, Burkett VR, Cai RS, Chatterjee M, Cohen SJ, Cramer W, Dasgupta P, Davidson DJ, Denton F, Doll P, Dow K, Hijioka Y, Hoegh-Guldberg O, Jones RG, Jones RN, Kitching RL, Kovats RS, Larsen JN, Lin E, Lobell DB, Losada I.J., Magrin GO, Marengo JA, Markandya A, McCarl BA, McLean RF, Mearns LO, Midgley GF, Mimura N, Morton JF, Niang I, Noble IR, Nurse LA, O'Brien KL, Oki T, Olsson L, Oppenheimer M, Overpeck JT, Pereira JJ, Poloczanska ES, Porter JR, Portner HO, Prather MJ, Pulwarty RS, Reisinger A, Revi A, Romero-Lankao P, Ruppel OC, Satterthwaite DE, Schmidt DN, Settele J, Smith KR, Stone DA, Suarez AG, Tschakert P, Valentini R, Villamizar A, Warren R, Wilbanks TJ, Wong PP, Woodward A, Yohe GW (2014) Summary for Policymakers.
Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauza M, Hamard P, Muller B (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytologist, 169(3), 623-635.
Hammer GL, van Oosterom E, McLean G, Chapman SC, Broad I, Harland P, Muchow RC (2010) Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany, 61 (8): 2185-2202.
Harrison MT, Tardieu F, Dong Z, Messina CD, Hammer GL (2013) Characterizing drought stress and trait influence on maize yield under current and future conditions. Global Change Biology:n/a-n/a. DOI: 10.1111/gcb.12381.
Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop science, 50(5), 1681-1690.
Millet E, Welcker C, Kruijer W, Negro S, Nicolas S, Praud S, Ranc N, Presterl T, Tuberosa R, Bedo Z, Draye X, Usadel B, Charcosset A, van Eeuwijk F, Tardieu F, Coupel-Ledru A, Bauland C (2016) Genome-wide analysis of yield in Europe: allelic effects as functions of drought and heat scenarios. Plant Physiology 172:749-764. DOI: 10.1104/pp.16.00621.
Rebetzke GJ, Condona AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Science, 42, 739-45.
Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435-+. DOI: 10.1038/nature11575.
Tardieu F (2011) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. Journal of experimental botany, 63, 25–31.
Tardieu F, Tuberosa R (2010) Dissection and modelling of abiotic stress tolerance in plants. Current opinion in plant biology, 13(2), 206-212.
Tisne S, Schmalenbach I, Reymond M, Dauzat M, Pervent M, Vile D, Granier C (2010) Keep on growing under drought: genetic and developmental bases of the response of rosette area using a recombinant inbred line population. Plant, cell & environment, 33(11), 1875-1887.
van Oosterom EJ, Yang ZJ, Zhang FL, Deifel KS, Cooper M, Messina CD, Hammer GL (2016) Hybrid variation for root system efficiency in maize: potential links to drought adaptation. Functional Plant Biology 43:502-511. DOI: 10.1071/fp15308.
Welcker C, Sadok W, Dignat G, Renault M, Salvi S, Charcosset A, Tardieu F (2011) A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait loci and introgression lines of maize. Plant Physiology, 157(2), 718-729.